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The magnetic properties of a ferromagnetic or ferrimagnetic 
mixed spin-; and spin-: king system 
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t Depanment of Physics, Nagoya University, 464-01 Nagoya, Japan 
i Ferromagnetic Laboratory, Institute of Molecular Physics, 60-179 Poznan, Poland 

Received 9 March 1993 

Abstract The magnetic properties of a ferromagnetic or ferrimagnetic mixed spin-; and spin-: 
king system are studied by the use of the effective-field theory. The general expressions 
for evaluating these properties are give’ver In par!icular, the intemal energy. specific heat 
and susceptibility of the system with the h o n e p m b  latie are numericauy examined. Some 
characteristic phenomena are found in these properties. 

1. Introduction 

In recent years, the study of the king model with mixed spins of different magnitudes has 
attracted considerable attention. The mixed-spin Ising model has less translational symmetry 
than the single-spin counterparts and was originally a simple system showing a certain 
type of ferrimagnetism because of the complexity of the structures in real ferrimagnets. In 
particular, most research attention has been directed to the two-sublattice mixed-spin system 
consisting of spin-; and spin-; with a crystal-field interaction. It has been investigated by 
a variety of techniques, such as exact [1,2] and approximate [3-7] methods and the high- 
temperature series expansion method [8]. An important point in studying the mixed-spin 
model including spin-I ions is that the hicritical behaviour is predicted in the system with 
a coordination number Z larger than Z = 3 [6]. On the other hand, the mixed-spin Ising 
model consisting of spin-: and spin4 (S > 1) ions has not been examined so much except 
for the phase diagrams of a honeycomb lattice [ Z ] .  Fmlhennore, as discussed in 191, the 
magnetic properties of the system with S = ; are expected to be different f” those of 
the system with S = 1. 

The purpose of this work is to study the magnetic properties of a mixed spin-; and 
spin-; ferromagnetic or ferrimagnetic Ising system with a crystal-field interaction on the 
basis of the new formulation [lo] which is superior to the standard mean-field theory. The 
outline of this work is as follows. In section 2, we briefly present the basic framework of 
the theory. In section 3, the general expressions for evaluating the magnetic properties of 
the system are given on the basis of the framework. The numerical results for the intemal 
energy, specific heat and susceptibility of the system with a honeycomb lattice are obtained 
in section 4. We have found some characteristic phenomena in these properties. 
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2. Formulation 

We consider a mixed-spin ferromagnetic or ferrimagnetic Ising system consisting of spin-; 
and spin-; with a crystal-field constant D. The Hamiltonian of the system is 

where S,' takes the values .t; and .ti, p: can be +; or -4, and the first summation is 
carried out only over nearest-neighbour pairs of spins. Here, J z 0 and hence the minus 
sign and plus sign of the first term denote the ferromagnetic or ferrimagnetic interaction, 
respectively. 

As discussed in [9, IO], for the evaluation of the mean values (p:) and ( S z )  we can use 
the exact Ising spin identities and the differential operator technique. Within the framework 
of the effective-field theory, the magnetizations per site are given by 

U = ( p f )  = I A ( J V )  & B(JV)m t C(JV)q & D(JV)rlZf(x)l,=~ (2) 

and 

m = (Si) = [cosh(iJV) &2usinh(fJV)IZF(x)l,=o (3) 

where V = a/ax is a differential operator and Z is the coordination number. The functions 
f ( x )  and F ( x )  are defined by 

f ( x )  = 1 tanh(iBx) 

and 

F(x )  = 1[3sinh(igx) + exp(-2Dg) sinh($?x)]/[cosh(~gx) + exp(-2Dg)cosh($?x)] 

(4) 

where g = I j k s T .  
Here, in order to derive the sublattice magnetizations, we have used the exact Ising spin 

identities as well as the exact van der Waerden identities for spin-; and spin-;. To treat the 
multispin correlation functions, the decoupling approximation has then been introduced: 

(5) 

for j # m # n # . . . # k. As discussed in [lo], the statistical accuracy of (5 )  corresponds 
to the Zemike [ l l ]  approximation of the spin-4 Ising model for the special case when 
D / J  = -W. By the use of the exact van der Waerden identity for S = ;, the coefficients 
A ,  B, C and D in (2) are given by 

(fiLfS,Z(S3'.. 4:) = (p;)(S,",((S,")', . . . ( p i )  

.A(JV) = +[9cosh(fJV) -cosh($JV)] 

B ( J V )  = h[27sinh(iJV) - sinh($JV)] 

C(JV) = f[cosh(iJV) - cosh(iJV)] 

D(JV) = $[sinh(;JV) - 3sinh(iJV)]. 
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The parameters q and r in (2) are defined by 

4 = ((S,y) (7) 

(8) 2 3  r = KS,) ). 

By using the same procedure as that of (3), the parameters q and r are given in the 
following forms: 

and 

where the functions G(x) and H ( x )  are defined by 

and 

Here, note D the 
ferromagnetic and ferrimagnetic interactions, respectively, in (1). Thus, we have a complete 
set of equations for studying the magnetic properties of the system. As one can see, in our 
treatment two new order parameters q and r naturally appear which one is able to evaluate. 
This is not the case of the standard mean-field theory where all correlations are neglected. It 
is one reason why the present framework provides better results than the standard mean-field 
theory. 

it the minus sign and plus sign in (2). (3). (9) and (10) correspon 

On the other hand, the total magnetization M of the system is 

M = ; N ( m + u )  (13) 

where N is the number of magnetic atoms. 

3. Magnetic properties 

In this section, we study the magnetic propelties of the mixed-spin king system on the basis 
of the formulation in section 2. 



5334 T Kaneyoshi et al 

3.1. Phase diagram 

Let us first examine the phase diagram. When the temperature is higher than the transition 
temperature, the whole system is demagnetized. The transition temperature of the mixed- 
spin system can be obtained by requiring that the sublattice magnetizations m and u and the 
parameter r tend to zero continuously as the temperature approaches a critical temperature, 
since in the present system there is no hicritical behaviour [IO]. Consequently, from the 
coupled equations (2). (3). (9) and (IO) the following linearized equations can be derived: 

with 

where the parameter 40 in (15) is given by 

qo = coshZ(iJV) G ( x ) [ ~ , ~ .  (16) 

These coefficients ( K I ,  Kz, R I  and L I )  and 40 for a fixed value of Z can be calculated 
by using a mathematical relation exp(aV) + ( x )  = +(x + a ) .  Then, the phase diagram (or 
transition temperature) can be determined by solving the relation 

1 =2KiR1  + 2 K z L 1 .  (17) 

Here, note that the transition temperature determined from (17) is independent of the f 
sign in (14); the relation is valid for both (ferromagnetic and ferrimagnetic) cases. In [91, 
the results (or phase diagram) for Z = 3.4 and 6 were obtained (see figure 1) as a function 
of D / J .  In the figure, the exact solution for the honeycomb lattice [2 ]  was also depicted 
for comparison. It indicates that our fomulation gives reasonable results. 

3.2.  Internal energy and specific heat 

The intemal energy U of the mixed-spin system is given by 

2 U / N  = -$(/$E,?) - f(S2E;) - $Dq (18) 

with 

where the summations in (1 9) are over the nearest neighbours of a site i (or a site m). Then 
the specific heat C of the system can be determined from the relation 

c = au/aT. (20)  
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Figure 1. The internal energy U versus temperature T for the mixed spin-; and spin-: rsing 
system with the honeycomb lattice, when the value of a (U = D / J )  is fixed at some typical 
values. 
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k,T/J 
Figure 2. The specific heat C versus temperahlre T for the mixed-spin system with Z = 3, 
when the value of U is changed. 

For the evaluation of ($E,?) in (18). the exact king spin identity can also be applie& 

(21) 

The expectation value (exp(EZy)) in (21) can be evaluated in the same way as that of m 

(pi Z Z - E z  ) - ( exp(EZv))f(x)lx=o = I(a/ar)(exp(EZr))ty=Vf(x)ix=O. 
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by using the exact van der Waerden identity for S = f and the decoupling approximation 
(5). It is given by 

(22) (exp(E:y)) = I A W )  % B(yJ )m + C(yJ)q f D(yJ)rlZ 

from which the expectation value (pf E,?) is obtained as 

(pfEf) = i JZ[-%D(JV)  i2A(JV)m + E ( J V ) q  f t C ( J V ) r ]  

x [A(JV) $: B ( J V ) ~  + c ( J v ) q *  ~ ( ~ v ) r ] ~ - ' f ( x ) l , = o  

E(JV) = $3sinh(:JV) - sinh(4JV)I. 

(23) 

with 

(W 
On the other hand, the contribution from (Si./?:) in (18) can be easily calculated in the 
same way as that of (pfE,?): 

( S i E ; )  = ;JZ[sinh(fJV) f 20 cosh(~JV)l[cosh(~JV) f ~sinh(~JV)IZ- 'F(x) I r=o .  

(2) 

Thus, the intemal energy and the specific heat can be determined From (18) and (20). 

3.3. Susceptibility 

The initial susceptibility of the mixed-spin system is also an important physical property 
which can be measured experimentally. In order to obtain the expression, we must include 
the applied field term in the Hamiltonian (1): 

where H is the applied magnetic field. 
For H # 0.0, equations for U, m, q and r have the same forms as those for H = 0.0, 

except that the functions f ( x ) ,  F ( x ) ,  G(x)  and H ( x )  in (2). (3). (9) and (10) must be 
replaced by f ( x  + H), F ( x  + H), G(x + H) and H ( x  + H), respectively. The initial 
susceptibility x is defined by 

x = iim ( B M I B H )  = (aM/aH),, = ;N[(am/aH),, + ( a ~ / a ~ ) ~ l .  (27) H - 0  

By differentiating U, m, q and r with respect to H, one obtains 

(aUiaH),, = P A ,  rt r I ( a m / a w o  + r,(as/aH), f r j ( a r / ~ ) O  

( amlaw, ,  = P A ,  * zr4(aU/aH),, 

(aq /amo = P A ,  rt zr5(aU/amo 

(ar/aH)o =  PA^ f. 2 r 6 ( a ~ / a ~ ) , ,  

(28) 

where the coefficients Ai (i = 1-4) and ri (i = 1-6) are defined in appendix 1. From these 
relations, the initial susceptibility x is given by 

,y = fN@A/r  (29) 
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with 

r = I - 2(r1r4  + rzr5 + r3rk). (31) 

In particular, in the temperature region above the transition temperature determined from 
(17), the coefficients f j  (i = 1-5) are given; putting m = U = 0 and q = qo into these 
gives 

rz = r5 = o rI = K~ rz= K~ r.,=RI r a = L I .  (32) 

The inverse paramagnetic susceptibility xi: is then given by 

xp$ = (2ks7'/WIl - (KIRI + KzLdl/Ao) (33) 

with 

where AY, A: and A: are defined by 

A: = ~shZ(~JV)R(x) l , , o .  

Thus, the initial susceptibility and the paramagnetic susceptibility can be determined from 
(29) and (33). 

4. Numerical results 

In sections 2 and 3, we have derived the general expressions for evaluating the magnetic 
properties of the spin-; and spin-; mixed (ferromagnetic or ferrimagnetic) Ising system. In 
particular, in the previous work [9] we have demonstrated the temperature dependences of 
m, U and M for the honeycomb lattice (Z = 3) by solving the coupled equations (Z), (3). (9) 
and (IO) numerically. As depicted in figure 2 of 191, they may exhibit some characteristics 
different from the corresponding mixed spin-4 and spin-1 system [12]. In this section, let 
us show some typical results of the internal energy, specific heat and initial susceptibility 
in the present system by solving the expressions in section 3 numerically for the case when 
Z = 3. Then, we have also used the numerical results for m and U obtained in previous 
work [9]. 
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4.1. Internal energy and specific heat 

Figure 1 shows the thermal variations in the intemal energy U when the parameter a defined 
by 

a = D f J  

is changed. As discussed in [9],  the parameter a has an important physical meaning for 
distinguishing the magnetization curve of m (or M). For the system with a c -0.75 the 
saturation magnetization of m at T = 0 K is given by m = $, and for the system with 
LI > -0.75 it is given by m = :. On the other hand, the saturation magnetization of 
the system with a = -0.75 is m = 1.0, which indicates that in the ground state the spin 
configuration of S," in the system consists of the mixed phase; the S," are randomly in the 
S," = &$ or S: = ki state with equal probabilities. As is seen from figure 1, however, 
the intemal energy does not express any characteristic feature depending on the value of a, 
although in detail a small change in curvature is Seen in thecurve for a = -0.5 especially in 
the very-low-temperature region near kBT/J  = 0.3. Here, one should note that the intemal 
energy obtained is independent of the f sign in the Hamiltonian (1). The results are valid 
for both (ferromagnetic and ferrimagnetic) cases. 

In figure 2, the thermal variations in specific heat in the system are plotted by changing 
the value of a. As is seen from the figure, for the system with a value of a near (Y = -0.75 
(the curves for a = -1.0 and -0.5) the specific heat may show a characteristic behaviour 
in the very-low-temperature region in comparision with the results for other values of a 
which express a monotonic decrease to C = 0.0 at T = 0 K. The phenomenon is closely 
related to the anomalous behaviour of the magnetization curve m, as depicted in figure 2 
of 191. Here, OUT formulation is the effective-field theory, so that the specific heat exhibits 
a discontinuity at the transition temperature T,. However, one should note that for T z T, 
the specific heat takes finite values. It also indicates that our formulation is superior to the 
standard mean-field theory. 

4.2. Susceptibility 

Let us now find the inverse susceptibility of the ferromagnetic or ferrimagnetic mixed-spin 
system by changing the value of a. Figures 3 and 4 correspond to the ferromagnetic and 
ferrimagnetic cases, respectively. 

Figure 3 expresses the typical variations in x-l for the ferromagnetic system with Z = 3. 
AS is seen from the figure, the inverse paramagnetic susceptibility satisfies the Curie-Weiss 
law except for the region near T = T, for the curve with a = - 1.5 in which a weak upward 
curvature is observed. On the other hand, the behaviour of x-' becomes dramatic in the 
region below T,. When the value of a approaches the critical value a = -0.75 where the 
ground state of S," may change from the S," = fi (or S," = 3t;) state to the S," = f$ (or 
S," = fi) state, the outstanding features of x-' are obtained, as depicted for a = -0.6 
and -0.5. In particular, x-'  for the system with OL = -0.75 may exhibit a broad maximum 
in the region 0 c T c Tc and then reduces to zero at T = 0 K. It is completely different 
from others which express the divergence of x-' at T = 0 K (or the normal behaviour in 
a ferromagnet). The anomalous result of a = -0.75 which reduces to zero at T = 0 K 
arises only from the nature of the ground state where the spin configuration of S i  is in the 
mixed phase, namely the Sf = 5: or S i  = &i state with equal probabilities. Thus, the 
outstanding behaviour of x-' for the system with a value of a at or near a = -0.75 results 
f" the characteristic features of the magnetization curve m, as shown in figure 2 of [9]. 
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kBT/J 
Figure 3. The inverse susceptibility x-' versus 
temperature for the fmmagnetic mixed-spin system 
with Z = 3, when the value of 0 is fixed at some 
typical values. 
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Figure 4. The inverse susceptibility x-' versus 
temperature for the ferrimagnetic mixed-spin system 
with 2 = 3, when a is fixed at the same values as 
in figure 3. 

In figure 4, the x-' values for the ferrimagnetic system are depicted by selecting the 
same values of a as those in figure 3. On comparison of figure 4 with figure 3, the 
behaviour of ,y-' for T < T, is very similar on the whole, although some differences in 
detail are observed. On the other hand, the inverse paramagnetic susceptibility in figure 4 
clearly exhibits some features depending on whether the interaction is ferrimagnetic (or 
antiferromagnetic) and the value of (I is larger (or smaller) than (I = -0.75. That is to say, 
firstly, when a > -0.75, the spin state of S," at T = 0 K is in the S," = k; state and hence 

may show an upward curvature near T = T, which is characteristic for the ferrimagnetic 
systems. Secondly, for (I < -0.75, the spin state of S: at T = 0 K is in the S,' = &$ state., 
so that the ground state of the mixed-spin system must be antiferromagnetic. As depicted 
for the system with U = -1.5, x,& may express the characteristic of antiferromagnetism, 
although x-' may still reduce to zero at the transition temperature. However, as is discussed 
in appendix 2, for a -+ -w, xi& has a finite value at the transition temperam (or the 
N&I temperature). since only the S," = zktf state is then allowed energetically in the whole 
temperature region. Thus, the results in figure 4 express the outstanding features due to the 
crossing from the ferrimagnetic case to the antiferromagnetic case on decrease in (I. 

5. Conclusions 

In this work, we have developed general expressions for evaluating the magnetic properties 
of the mixed spin-; and spin-: ferromagnetic or ferrimagnetic king system on the basis of 
the new effective-field theory which includes the two order parameters q and r in addition to 
the magnetization. In fact, the parameters have to be taken into account when the theory is 
constructed beyond the standard mean-field theory. However, the expressions depend only 
on the coordination number Z and hence the critical properties at the transition temperature 
are essentially of the mean-field type. as shown in figure 2. 

In section 4 as well as in the previous work [9], we have found the magnetic properties 
of the system with the honeycomb lattice (Z = 3) by solving the general expressions 
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numerically. As depicted in previous work, our formulation gives reasonable results 
for the transition temperature in comparison with the exact results. Furthermore, the 
magnetization curves have exhibited some characteristics different f" the comsponding 
mixed spin-$ and spin-1 system. As shown in figures 14,  on the other hand, the specific 
heat and susceptibility of the present system have also exhibited a number of interesting 
behaviours. In particular, the susceptibility may express many anomalous behaviours for 
both (ferromagnetic and ferrimagnetic) cases, when the value of a is selected at or near 
the critical value (Y = -0.75 where the ground state of S,' changes fTom the S,' = fT- 2 

(or S," = ii) state to the S,' = i$ (or S i  = fi) state. Moreover, the paramagnetic 
susceptibility of the ferrimagnetic system with the plus sign in (1) clearly exhibited a 
crossing from ferrimagnetic behaviour to antiferromagnetic behaviour on decrease in a. 
As far as we know, these findings have not been previously reported. These results may 
be helpful when the experimental data of a ferromagnetic or ferrimagnetic materid are 
analysed 

(Al . l )  

and 

(A1.3) 
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Appendix 2 

We examine here the paramagnetic susceptibility analytically for the special case when 
a = --M. For this case, the spin S: in the mixed-spin system is only allowable in the 
S," = rtf state energetically and hence the system looks like a standad ferromagnetic or 
antifemmagnetic spin-f king model. 

To prove this fact, let us at first note that for a = -cm the functions F(x).  G(x) and 
H ( x )  are given by 

from which 

q = 4 0 = '  4 r=" 4 

A(JV)+C(JV)qo =cosh(fJV). 

From these results, one can easily obtain the relations 

LI  = $ R I  K I  + aK2 = 2Rl 

so that equation (17) reduces to 

1 = (2Rl)' 

or 

Zsinh(~JV)cosh'-'(~JV)tanh(lax)I,=o = 1 

with 

(A2.2) 

(A2.3) 

(A2.4) 

Bc = IIkBTc. 

Here, equation (A2.4) is simply that of the spin-: king model in the Zemike 
approximation [13]. In fact, for Z = 6 it reproduces the well known Zemike [ I l l  equation 
for the spin-f simple cubic lattice. The solution is given by 

4ksT,/J = 5.073 for Z = 6 

which is superior to the standard mean-field theory result (4ksTC/J = 6). 
From (A2.1) and (A2.3). for a = -cm we obtain 

I ( * )  = O(x)  = 4 sech2($x) 

R ( x )  = af(x)  

from which (35) reduces to 

0 - 1  0 AT = A: A4 - 
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Therefore, the paramagnetic susceptibility (33) is given, for a = -w, by 

xpara = ; N B A o / [ ~  - (2RdZ1 (A2.8) 

with 

A0 = AY[l - (2Ri)’I + AY(1 rt2R1)*. ( ~ 2 9 )  

Then, the paramagnetic susceptibility for the ferromagnetic interaction (or the plus 
sign in (A2.9)) is given by 

XZ = (N/keT)[AY/(I  - 2Rl)l. (A2.10) 

Thus, the paramagnetic susceptibility (A2.10) for the ferromagnet with a = -CO diverges at 
the transition temperature Tc determined from (A2.4). On the other hand, the paramagnetic 
susceptibility ,yE for the antiferromagnetic interaction (or the minus sign in (A2.9)) is 
given by 

x:: = ( N / k e T ) [ A Y / ( l  t 2Ri)l. (A2.11) 

Thus, the paramagnetic susceptibility (A2.11) for the antiferromagnet with a = -w takes 
a finite value at the transition temperature (or the N6el temperature TN)  determined from 
(A2.4). namely 

$2 = (N/~~BTN)A?(TN) (A2.12) 

with 
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